List 3

Directional derivatives, critical points

86. (a) Give the derivative of $\frac{x^{3}}{\sin (\pi y)}$ at the point $\left(4, \frac{1}{4}\right)$ in the direction $\hat{\imath}=[1,0]$.
(b) Give the derivative of $\frac{x^{3}}{\sin (\pi y)}$ at the point $\left(4, \frac{1}{4}\right)$ in the direction $\hat{\jmath}=[0,1]$.

The directional derivative of $f(x, y)$ at the point (a, b) in the direction of the unit vector \hat{u} (a vector of length 1) is written as $f_{\hat{u}}^{\prime}(a, b)$ and can be calculated as

$$
f_{\hat{u}}^{\prime}(a, b)=\nabla f(a, b) \cdot \hat{u} .
$$

87. For $f(x, y)=x^{2} \sin (y)$, calculate the directional derivative at $\left(4, \frac{\pi}{3}\right)$ in the direction $\hat{u}=\left[\frac{\sqrt{3}}{2}, \frac{1}{2}\right]$.
88. What is the derivative of $f(x, y)=x e^{y}$ at the point $(3,0)$ in the direction $[1,1]$?
89. Give a unit vector \hat{u} such that $f_{\hat{u}}^{\prime}(1,1)=0$ for $f(x, y)=x^{3} y^{4}$.
90. For $f(x, y)=7 y \sin (x y)$ at the point $(x, y)=(0,2)$,
(a) what are the smallest (most negative) possible value of $f_{\hat{u}}^{\prime}(0,2)$?
(b) give the direction, as a unit vector, in which f decreases as much as possible, that is, the direction in which $f_{\hat{u}}^{\prime}(0,2)$ is most negative.
(c) give a direction, as a unit vector, in which the derivative of f is zero.
91. Give the direction in which $\frac{x+y^{2}}{2 e^{x}}$ increases the most from the point $(1,2)$.

A critical point (or $\mathbf{C P}$) of a function of multiple variables is a point in the domain of the function where all partial derivatives are zero or where at least one partial derivative is undefined.
92. If $(3,8)$ is a critical point of $f(x, y)$, what is the value of $f_{\hat{u}}^{\prime}(3,8)$ in the direction $\hat{u}=\left[-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right]$? In the direction of $\vec{v}=[8,7]$?
93. Find the critical point(s) of

$$
f(x, y)=2 x^{3}-3 x^{2} y-12 x^{2}-3 y^{2} .
$$

94. Find the critical point(s) of each of the following functions.
(a) $f(x, y)=e^{x}-x y$
(c) $f(x, y)=x \sin (y)+9$
(b) $f(x, y)=y \ln \left(x^{2}\right)$
(d) $f(x, y)=x^{3}+8 y^{3}-3 x y$
95. Find the critical point(s) of $f(x, y, z)=x \ln (z)+y^{3} z$.
96. Find the critical point(s) of $f(x, y, z)=\frac{1}{3} x^{3}-x+y z-y-z^{2}$.

The Hessian of $f(x, y)$ is the matrix $\left[\begin{array}{ll}f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{y x}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right]$. We write $\mathbf{H} f$ for this matrix.
The Second Derivative Test: For each critical point of a function $f(x, y)$, calculate the "discriminant"

$$
D=\operatorname{det}(\mathbf{H} f)=f_{x x}^{\prime \prime} f_{y y}^{\prime \prime}-\left(f_{x y}^{\prime \prime}\right)^{2}
$$

If $D<0$, then the CP is a saddle (also called a saddle point).
If $D>0$ and $f_{x x}^{\prime \prime}>0$, then the CP is a local minimum.
If $D>0$ and $f_{x x}^{\prime \prime}<0$, then the CP is a local maximum.
If $D=0$, or if $D>0$ but $f_{x x}^{\prime \prime}=0$, then the test does not help classify the CP.
97. Calculate the Hessian of $f(x, y)=x \ln (x y)$ at the point $\left(3, \frac{1}{2}\right)$.
98. Calculate the determinant of the Hessian of $f=x^{2} \sin (y)$ at the point $\left(4, \frac{\pi}{3}\right)$.
99. Find and classify all the critical point(s) of $f(x, y)=2 x^{2}+y^{2}-3 x y$.
100. Find and classify all the critical point(s) of $f(x, y)=2 x^{3}-3 x^{2} y-12 x^{2}-3 y^{2}$.
101. Suppose $f(x, y)$ is a twice-differentiable function and that

$$
\left.\begin{array}{rlrl}
f(-3,0) & =5, & f(4,9) & =37, \\
f_{x}^{\prime}(-3,0) & =0, & f_{x}^{\prime}(4,9) & =0, \\
f_{y}^{\prime}(-3,0) & =1, & f_{y}^{\prime}(4,9) & =0, \\
f_{x x}^{\prime \prime}(-3,0) & =0, & f_{x x}^{\prime \prime}(4,9) & =4, \\
f_{x y}^{\prime \prime}(-3,0) & =-4, & f_{x y}^{\prime \prime}(4,9) & =2, \\
f_{y y}^{\prime \prime}(-3,0) & =12, & f_{y}^{\prime}(1,-8) & =0, \\
\prime & f_{y y}^{\prime \prime}(4,9) & =11, & f_{x x}^{\prime \prime}(1,-8)
\end{array}\right)=1, ~ f_{x y}^{\prime \prime}(1,-8)=2, ~ f_{y y}^{\prime \prime}(1,-8)=1 .
$$

(a) Is $(-3,0)$ a critical point of f ? Is $(4,9)$? Is $(1,-8)$?
(b) Is $(-3,0)$ a local minimum of f ? Is $(4,9)$? Is $(1,-8)$?
(c) Is $(-3,0)$ a local maximum of f ? Is $(4,9)$? Is $(1,-8)$?
(d) Is $(-3,0)$ a saddle point of f ? Is $(4,9)$? Is $(1,-8)$?
102. Find and classify the CP of the function $f(x, y)$ for which $\nabla f(x, y)=\left[\begin{array}{c}3 x^{2}-3 y \\ 24 y^{2}-3 x\end{array}\right]$.
103. Match each gradient vector with the Hessian matrix for the same function.
(a) $\nabla f=\left[\begin{array}{c}3 x^{2}+y \\ x+30 y^{2}\end{array}\right]$
(I) $\mathbf{H} f=\left[\begin{array}{cc}90 x^{8}+2 y^{3} & 6 x y^{2} \\ 6 x y^{2} & 6 x^{2} y\end{array}\right]$
(b) $\nabla f=\left[\begin{array}{c}3 x^{2}+y \\ x+15 y^{4}\end{array}\right]$
(II) $\mathbf{H} f=\left[\begin{array}{cc}6 x & 1 \\ 1 & 60 y^{3}\end{array}\right]$
(c) $\nabla f=\left[\begin{array}{c}10 x^{9}+2 x y^{3} \\ 3 x^{2} y^{2}+1\end{array}\right]$
(III) $\mathbf{H} f=\left[\begin{array}{cc}40 x^{3}+2 y^{3} & 6 x y^{2} \\ 6 x y^{2} & 6 x^{2} y\end{array}\right]$
(d) $\nabla f=\left[\begin{array}{c}10 x^{4}+2 x y^{3} \\ 3 x^{2} y^{2}+1\end{array}\right]$
(IV) $\mathbf{H} f=\left[\begin{array}{cc}6 x & 1 \\ 1 & 60 y\end{array}\right]$
104. Evaluate the iterated integral $\int_{1}^{4} \int_{1}^{2}\left(\frac{x}{y}+\frac{y}{x}\right) \mathrm{d} y \mathrm{~d} x$ by following these steps:
(a) Calculate $\int_{1}^{2}\left(\frac{x}{y}+\frac{y}{x}\right) \mathrm{d} y$. Your answer should be a formula involving x.
(b) Calculate $\int_{1}^{4} f(x) \mathrm{d} x$, where $f(x)$ is the answer to part (a). The answer to (b) should be a number, and this is exactly the same as $\int_{1}^{4} \int_{1}^{2}\left(\frac{x}{y}+\frac{y}{x}\right) \mathrm{d} y \mathrm{~d} x$.
105. Evaluate (that is, find the value of) the following iterated integrals:
(a) $\int_{0}^{1} \int_{1}^{2}\left(4 x^{3}-9 x^{2} y^{2}\right) \mathrm{d} y \mathrm{~d} x$.
(b) $\int_{0}^{1} \int_{1}^{2}\left(4 x^{3}-9 x^{2} y^{2}\right) \mathrm{d} x \mathrm{~d} y$.
(c) $\int_{1}^{2} \int_{0}^{1}\left(4 x^{3}-9 x^{2} y^{2}\right) \mathrm{d} x \mathrm{~d} y$.
106. Calculate $\int_{0}^{\pi} \int_{0}^{1}(\sin \theta) e^{r^{2}} r \mathrm{~d} r \mathrm{~d} \theta$.
107. Evaluate the iterated integral $\int_{2}^{4} \int_{1}^{y} x y \mathrm{~d} x \mathrm{~d} y$ by following these steps:
(a) Calculate $\int_{1}^{y} x y \mathrm{~d} x$. Your answer should be a formula involving y.
(b) Calculate $\int_{2}^{4} g(y) \mathrm{d} y$, where $g(y)$ is the answer to part (a). The answer to (b) should be a number, and this is exactly the same as $\int_{2}^{4} \int_{1}^{y} x y \mathrm{~d} x \mathrm{~d} y$.
108. Evaluate $\int_{0}^{3} \int_{0}^{2 y} \sin \left(\pi y^{2}\right) \mathrm{d} x \mathrm{~d} y$.
109. Calculate $\int_{0}^{\pi / 2} \int_{x / 2}^{\sqrt{\sin x}} 8 y \mathrm{~d} y \mathrm{~d} x$.

