Analysis 2, Summer 2024

List 3

Directional derivatives, critical points

86. (a) Give the derivative of
$$\frac{x^3}{\sin(\pi y)}$$
 at the point $(4, \frac{1}{4})$ in the direction $\hat{\imath} = [1, 0]$.
(b) Give the derivative of $\frac{x^3}{\sin(\pi y)}$ at the point $(4, \frac{1}{4})$ in the direction $\hat{\jmath} = [0, 1]$.

The **directional derivative** of f(x, y) at the point (a, b) in the direction of the **unit** vector \hat{u} (a vector of length 1) is written as $f'_{\hat{u}}(a, b)$ and can be calculated as $f'_{\hat{u}}(a, b) = \nabla f(a, b) \cdot \hat{u}.$

- 87. For $f(x,y) = x^2 \sin(y)$, calculate the directional derivative at $(4, \frac{\pi}{3})$ in the direction $\hat{u} = \left[\frac{\sqrt{3}}{2}, \frac{1}{2}\right]$.
- 88. What is the derivative of $f(x, y) = xe^y$ at the point (3,0) in the direction [1,1]?
- 89. Give a unit vector \hat{u} such that $f'_{\hat{u}}(1,1) = 0$ for $f(x,y) = x^3 y^4$.
- 90. For $f(x, y) = 7y \sin(xy)$ at the point (x, y) = (0, 2),
 - (a) what are the smallest (most negative) possible value of $f'_{\hat{u}}(0,2)$?
 - (b) give the direction, as a unit vector, in which f decreases as much as possible, that is, the direction in which $f'_{\hat{u}}(0,2)$ is most negative.
 - (c) give a direction, as a unit vector, in which the derivative of f is zero.

91. Give the direction in which $\frac{x+y^2}{2e^x}$ increases the most from the point (1,2).

A critical point (or CP) of a function of multiple variables is a point in the domain of the function where all partial derivatives are zero or where at least one partial derivative is undefined.

- 92. If (3,8) is a critical point of f(x,y), what is the value of $f'_{\hat{u}}(3,8)$ in the direction $\hat{u} = \left[-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right]$? In the direction of $\vec{v} = [8,7]$?
- 93. Find the critical point(s) of

$$f(x,y) = 2x^3 - 3x^2y - 12x^2 - 3y^2.$$

- 94. Find the critical point(s) of each of the following functions.
 - (a) $f(x,y) = e^x xy$ (c) $f(x,y) = x\sin(y) + 9$
 - (b) $f(x,y) = y \ln(x^2)$ (d) $f(x,y) = x^3 + 8y^3 3xy$

95. Find the critical point(s) of $f(x, y, z) = x \ln(z) + y^3 z$.

96. Find the critical point(s) of $f(x, y, z) = \frac{1}{3}x^3 - x + yz - y - z^2$.

The **Hessian** of f(x, y) is the matrix $\begin{bmatrix} f''_{xx} & f''_{xy} \\ f''_{yx} & f''_{yy} \end{bmatrix}$. We write **H**f for this matrix. The Second Derivative Test: For each critical point of a function f(x, y), calculate the "discriminant" $D = \det(\mathbf{H}f) = f''_{xx} f''_{yy} - (f''_{xy})^2$. If D < 0, then the CP is a **saddle** (also called a **saddle point**). If D > 0 and $f''_{xx} > 0$, then the CP is a **local minimum**. If D > 0 and $f''_{xx} < 0$, then the CP is a **local maximum**. If D > 0 and $f''_{xx} < 0$, then the CP is a **local maximum**. If D = 0, or if D > 0 but $f''_{xx} = 0$, then the test does not help classify the CP.

97. Calculate the Hessian of $f(x, y) = x \ln(xy)$ at the point $(3, \frac{1}{2})$.

- 98. Calculate the determinant of the Hessian of $f = x^2 \sin(y)$ at the point $(4, \frac{\pi}{3})$.
- 99. Find and classify all the critical point(s) of $f(x, y) = 2x^2 + y^2 3xy$.
- 100. Find and classify all the critical point(s) of $f(x, y) = 2x^3 3x^2y 12x^2 3y^2$.
- 101. Suppose f(x, y) is a twice-differentiable function and that

$$\begin{array}{ll} f(-3,0)=5, & f(4,9)=37, & f(1,-8)=-5, \\ f'_x(-3,0)=0, & f'_x(4,9)=0, & f'_x(1,-8)=0, \\ f'_y(-3,0)=1, & f'_y(4,9)=0, & f'_y(1,-8)=0, \\ f''_{xx}(-3,0)=0, & f''_{xx}(4,9)=4, & f''_{xx}(1,-8)=1, \\ f''_{xy}(-3,0)=-4, & f''_{xy}(4,9)=2, & f''_{xy}(1,-8)=2, \\ f''_{yy}(-3,0)=12, & f''_{yy}(4,9)=11, & f''_{yy}(1,-8)=1. \end{array}$$

- (a) Is (-3,0) a critical point of f? Is (4,9)? Is (1,-8)?
- (b) Is (-3,0) a local minimum of f? Is (4,9)? Is (1,-8)?
- (c) Is (-3,0) a local maximum of f? Is (4,9)? Is (1,-8)?
- (d) Is (-3,0) a saddle point of f? Is (4,9)? Is (1,-8)?

102. Find and classify the CP of the function f(x, y) for which $\nabla f(x, y) = \begin{bmatrix} 3x^2 - 3y \\ 24y^2 - 3x \end{bmatrix}$.

103. Match each gradient vector with the Hessian matrix for the same function.

(a)
$$\nabla f = \begin{bmatrix} 3x^2 + y \\ x + 30y^2 \end{bmatrix}$$

(b) $\nabla f = \begin{bmatrix} 3x^2 + y \\ x + 15y^4 \end{bmatrix}$
(c) $\nabla f = \begin{bmatrix} 10x^9 + 2xy^3 \\ 3x^2y^2 + 1 \end{bmatrix}$
(d) $\nabla f = \begin{bmatrix} 10x^4 + 2xy^3 \\ 3x^2y^2 + 1 \end{bmatrix}$
(II) $\mathbf{H}f = \begin{bmatrix} 6x & 1 \\ 1 & 60y^3 \end{bmatrix}$
(III) $\mathbf{H}f = \begin{bmatrix} 40x^3 + 2y^3 & 6xy^2 \\ 6xy^2 & 6x^2y \end{bmatrix}$
(IV) $\mathbf{H}f = \begin{bmatrix} 6x & 1 \\ 1 & 60y \end{bmatrix}$

104. Evaluate the iterated integral $\int_{1}^{4} \int_{1}^{2} \left(\frac{x}{y} + \frac{y}{x}\right) dy dx$ by following these steps:

- (a) Calculate $\int_{1}^{2} \left(\frac{x}{y} + \frac{y}{x}\right) dy$. Your answer should be a formula involving x.
- (b) Calculate $\int_{1}^{4} f(x) dx$, where f(x) is the answer to part (a). The answer to (b) should be a number, and this is exactly the same as $\int_{1}^{4} \int_{1}^{2} \left(\frac{x}{y} + \frac{y}{x}\right) dy dx$.

105. Evaluate (that is, find the value of) the following iterated integrals:

(a)
$$\int_0^1 \int_1^2 (4x^3 - 9x^2y^2) \, dy \, dx.$$

(b) $\int_0^1 \int_1^2 (4x^3 - 9x^2y^2) \, dx \, dy.$
(c) $\int_1^2 \int_0^1 (4x^3 - 9x^2y^2) \, dx \, dy.$

106. Calculate $\int_0^{\pi} \int_0^1 (\sin \theta) e^{r^2} r \, \mathrm{d}r \, \mathrm{d}\theta$.

107. Evaluate the iterated integral $\int_2^4 \int_1^y xy \, dx \, dy$ by following these steps:

- (a) Calculate $\int_{1}^{y} xy \, dx$. Your answer should be a formula involving y.
- (b) Calculate $\int_{2}^{4} g(y) \, dy$, where g(y) is the answer to part (a). The answer to (b) should be a number, and this is exactly the same as $\int_{2}^{4} \int_{1}^{y} xy \, dx \, dy$.

108. Evaluate
$$\int_0^3 \int_0^{2y} \sin(\pi y^2) \, dx \, dy$$
.
109. Calculate $\int_0^{\pi/2} \int_{x/2}^{\sqrt{\sin x}} 8y \, dy \, dx$.